Abstract

To investigate the molecular mechanism triggering pyroptosis of synovial fibroblast-like synoviocytes(FLSs)and the release of high mobility group protein 1(HMGB1)in a rat model of knee osteoarthritis(KOA). Twelve SD rats were randomized equally into blank control group without any treatment and KOA group with anterior cruciate ligament amputation (ACLT) to induce KOA.HE staining and Mankin score were used to evaluate the damage of knee cartilage.Western blotting was used to detect the expression of pyroptosis-related proteins and HMGB1 in the synovial tissue.In the cell experiment, rat FLSs were treated with PBS (control group), LPS+ATP (to induce cell pyroptosis), or LPS+ATP+siRNAs (to inhibit pyroptosis of the FLSs), and the cellular expressions of apoptosis-related proteins and HMGB1 were detected using Western blotting; the level of HMGB1 in the culture supernatant was detected with ELISA. In the rat models of KOA, the expressions of pyroptosis-related proteins and HMGB1 in the synovial tissue and Mankin score were significantly increased as compared with those in the control group(P < 0.05).In cultured rat FLSs, the expressions of apoptosis related proteins and HMGB1 were significantly higher in the pyroptosis group than in the control group and in cells transfected with the siRNAs targeting NLRP1, NLRP3, ASC and caspase-1(P < 0.05).The protein level of HMGB1 in the culture supernatant was significantly higher in pyroptosis group than in the control and siRNA groups (P < 0.05). In the pathological process of KOA, NLRPs inflammasome-mediated FLS pyroptosis causes massive release of HMGB1, which is associated with the activation of the downstream molecule caspase-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call