Abstract

Recent studies (Shin et al., 2014; Tiznobaik and Shin, 2013) in molten salt nanofluids have discussed the possibility of the development of nano dendritic structures as a mechanism behind heat capacity enhancements. It is established that these nanostructures enhance heat capacity due to their increased surface area. Shin et al. explained that these structures might be resulting from micro-segregation in salt eutectic due to differences in the level of attraction between different types of salts and nanoparticles. However, it does not explain how this segregated salt develops into dendrites. In this study, Tiznobaik's work is further exploited and explained based on nucleation and grain growth of nucleated salt. It is proposed that segregated nucleate on the surface of nanoparticles via heterogeneous nucleation and grow into dendritic through single-dimensional grain growth. Experimental verification for heat capacity enhancement performed on differential scanning calorimeter (DSC). Transmission electron miscroscope (TEM) was employed imaging dendritic strcutures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.