Abstract
Giant positive or negative magnetoresistance is calculated in a band model. The spectra of the band electrons in a two-sublattice antiferromagnetic intermetallic compound depend on the antiferromagnetism vector L(T,H). The metamagnetic transition to the ferromagnetic phase is accompanied by splitting with respect to the spin σ, displacement of the energy bands, and a decrease in the effective masses of the band electrons. This mechanism of giant negative magnetoresistance is also accompanied by an increase in the relaxation time τjσ. Scattering by chemical-bond fluctuations is considered as the main relaxation mechanism. Giant positive magnetoresistance results from a four-subband model of 4f and 5f intermetallic compounds. The electron effective masses m jσ(J jT ) of the (j,σ) bands increase with the mean angular momentum J 1T (T,H) of an ion in the jth sublattice of 4(5)f ions. The thermodynamics of such a four-sublattice model, the nonlinear magnetization and magnetoresistance curves, and the nonmonotonic dependence of the specific heat C m(T,H) on the field H are calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.