Abstract
The Rh blood group proteins are erythrocyte proteins important in neonatal and transfusion medicine. Recent studies have shed new light on the possible biological function of Rh proteins as members of a conserved family of proteins involved in ammonium transport. The erythrocyte Rh-associated glycoprotein (RhAG) mediates uptake of ammonium when expressed in Xenopus laevis oocytes, and functional studies indicate that RhAG might function as an NH(4)(+)-H(+)-exchanger. To further delineate the functional properties of RhAG, in this study we have expressed RhAG in both a Saccharomyces cerevisiae ammonium-transport mutant (mep1Delta mep2Delta mep3Delta) and a wild-type strain. RhAG was able to complement the transport mutant, with complementation strictly pH-dependent, requiring pH 6.2-6.5. RhAG also conferred resistance to methylamine (MA), a toxic analog of ammonium, and expression in wild-type cells revealed that resistance was correlated with efflux of MA. RhAG-mediated resistance was pH-dependent, being optimal at acid pH. The opposite pH dependence of ammonium complementation (uptake) and MA resistance (efflux) is consistent with bidirectional movement of substrate counter to the direction of the proton gradient. This report clarifies and expands previous observations of RhAG-mediated transport in yeast and supports the hypothesis that ammonium transport is coupled to the H(+) gradient and that RhAG functions as a NH(4)(+)/H(+) exchanger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Biological Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.