Abstract

Deoxyribonucleic acid (DNA), pulse labeled after ultraviolet irradiation of excision-defective mutants of Haemophilus influenzae, is of lower single strand molecular weight than that of unirradiated cells but approaches the size of DNA from unirradiated cells upon further incubation in growth medium. This gap-filling process is controlled by the rec-1 gene. Gap-filling occurs normally in a temperature-sensitive DNA synthesis mutant at the restrictive temperature showing that normal semiconservative DNA synthesis is not necessary for gap-filling. To test for recombinational events after irradiation, the DNA synthesized after irradiation was radioactively labeled for a short time in medium containing 5-bromodeoxyuridine followed by incubation for various times in non-radioactive, 5-bromodeoxyuridine-containing medium. The DNA was denatured and analyzed isopycnically. The labeled DNA was initially "heavy," but later shifted toward lighter densities. This shift occurred in the temperature-sensitive DNA synthesis mutant at the restrictive temperature and in the recombination-defective mutant rec-2, but was not seen in the rec-1 mutant. The density shift can be interpreted as evidence that rather extensive exchanges occurred between parental DNA and the DNA made after irradiation. These results suggest that such exchanges are important for gap-filling in H. influenzae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.