Abstract

Intact and alpha-toxin-permeabilized longitudinal smooth muscle were mounted for measurement of force and myosin light chain phosphorylation. Galanin contracted intact jejunum with a half-maximum effective concentration of 9.2 +/- 0.1 nM. Neither atropine, hexamethonium, guanethidine, nor tetrodotoxin affected the contraction. The contraction was also unaffected by depletion of intracellular Ca2+ or by addition of thapsigargin; removal of extracellular Ca2+ or addition of nifedipine abolished the contraction. Galanin increased myosin light chain phosphorylation levels concomitantly with force. During continued tissue stimulation, force fell to suprabasal values, whereas myosin light chain phosphorylation levels remained elevated. Galanin increased Ca2+ sensitivity of contraction in alpha-toxin-permeabilized tissues, and this was reversed by either guanosine 5'-O-(2-thiodiphosphate) or pertussis toxin. These results suggest that galanin-induced contraction of longitudinal jejunal smooth muscle is dependent on a pertussis toxin-sensitive G protein that is apparently not coupled to the release of intracellular Ca2+ but to the influx of extracellular Ca2+ and involves an initial myofilament Ca2+ sensitization followed by Ca2+ desensitization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call