Abstract

The present study aims to shed light on the mechanism of formation of the Oligo-Miocene oolitic ironstones of Haddat Ash Sham area, Saudi Arabia. These ironstones are enclosed within the middle part of the Oligo-Miocene siliciclastic succession of the western part of the Arabian Shield, western Saudi Arabia. The ironstone beds were formed during marine incursion and creation of short-lived starved time periods of high organic matter activities, ferrous iron, and low clastic input. The depositional and diagenetic processes involved in the formation of Haddat Ash Sham ironstones are summarized here as follows: (1) the deposition of detrital components (i.e., amorphous iron-bearing clays admixed with silt and sand-sized quartz grains) and their distribution by the waves and current actions in areas of different water depths (bars and inter-bar areas); (2) the deposition of the iron-bearing clays in slightly reducing transgressive conditions (dysaerobic zone) led to the authigenesis of green marine chamositic clays of variable mineralogical and chemical compositions according to the predominated depositional environments; and (3) in the upper parts of the depositional cycles, the iron-bearing clays become admixed with detrital quartz grains which resulted in the formation of silty and sandy ironstones of low iron content. The diagenetic processes led to the oxidation of the green chamositic clays and formation of amorphous Fe-oxyhydroxides, ferrihydrites, goethite, and hematite. These iron mineral phases are related to each other and show progressive steps of transformation during the diagenetic processes. The iron ooids represent in situ formed irregular domains formed during the diagenetic crystallization and dehydration of the amorphous iron oxyhdroxides resulted from the diagenetic oxidation of green chamositic clays. This is supported by the absence of detrital cores of the iron ooids, the gradational contact between the iron ooids and the enclosing matrix and also by the presence of many ooids of unclear and ill-defined internal structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call