Abstract

A review of the corrosion of Ni and Ni-based alloys in melts containing oxyanions (nitrate, sulphate, hydroxide and carbonate) is presented, emphasising the mechanism of growth, the composition and structure of the passivating oxide films formed on the material in such conditions. First, the thermodynamical background involving solubility and point defect chemistry calculations for oxides formed on Ni, Cr and Ni–Cr alloys in molten salt media is briefly commented. The main passivation product on the Ni surface has been reported to be cubic NiO. In the transition stage, further oxidation of the compact NiO layer has been shown to take place in which Ni(III) ions and nickel cation vacancies are formed. Transport of nickel cation vacancies has been proposed to neutralise the charges of the excess oxide ions formed in the further oxidation reaction. Ex situ analysis studies reported in the literature indicated the possible formation of Ni 2O 3 phase in the anodic layer. During the third stage of oxidation, a survey of the published data indicated that oxygen evolution from oxyanion melts is the predominant reaction taking place on the Ni/NiO electrode. This has been supposed to lead to a further accumulation of oxygen ions in the oxide lattice presumably as oxygen interstitials, and a NiO 2 phase formation has been also suggested. Literature data on the composition of the oxide film on industrial Ni-based alloys and superalloys in melts containing oxyanions are also presented and discussed. Special attention is paid to the effect of the composition of the alloy, the molten salt mixture and the gas atmosphere on the stability and protective ability of corrosion layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call