Abstract

A polypeptide corresponding to the core/dimerization domain of E. coli Trp repressor (TR), [2-66]2 TR, was constructed by insertion of a pair of stop codons into the trpR gene. The kinetic properties of the urea-induced folding of this core fragment were examined by intrinsic tryptophan fluorescence (FL) and circular dichroism (CD) spectroscopy. The kinetic response of wild-type TR (WT TR) is very complicated and has been interpreted to involve three parallel channels with multiple folding and isomerization reactions (Mann et al. (1995) Biochemistry 34, 14573-14580). The refolding of [2-66]2 TR can be described by a much simpler mechanism, involving an association reaction followed by a urea-dependent first-order folding reaction. The second-order rate constant for the association reaction approaches that of the diffusion limit, 3 x 10(8) M-1 s-1 in 1 M urea at 15 degreesC. Double-jump experiments demonstrate that >/=93% of the unfolded monomers proceed to the native dimer via the dimeric intermediate; several lines of evidence demonstrate that this dimeric species is an on-pathway intermediate. The subsequent first-order folding reaction of the dimeric intermediate to the native species involves development of additional secondary structure and tertiary structure. The kinetic folding mechanism of [2-66]2 TR suggests that: (1) the complexity of the folding kinetics of full-length WT TR arises from alternative interactions of the DNA reading heads with the dimerization core domain-not from the intertwined nature of the dimerization interface; (2) residues 2-66 contain all of the sequence information necessary to direct the near-diffusion-limited association reaction in a TR folding reaction; and (3) the formation of secondary and tertiary structure is concurrent with or precedes dimerization, and further development certainly follows the formation of quaternary structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call