Abstract
Reported nearly a decade ago, cyclic fatigue failure in silicon thin films has remained a mystery. Silicon does not display the room-temperature plasticity or extrinsic toughening mechanisms necessary to cause fatigue in either ductile (e.g., metals) or brittle (e.g., ceramics and ordered intermetallics) materials. This letter presents experimental evidence for the cyclic fatigue of silicon via a conceptually different mechanism termed reaction-layer fatigue. Based on mechanical testing, electron microscopy, and self-assembled monolayers, we present direct observation of fatigue-crack initiation in polycrystalline silicon, the mechanism of crack initiation, and a method for altering fatigue damage accumulation.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.