Abstract
DA-8159, a new Phosphodiesterase (PDE) 5 inhibitor, has exhibited potent erectogenic potential in a penile erection test in rats and anesthetized dogs. In this study, we investigated the mechanism of its erectogenic activity by measuring the activity of DA-8159 against a various PDE isozymes and assessing cGMP and cAMP formation in a rabbit corpus cavernosum in vitro. DA-8159 inhibited the PDE 5 activity in rabbit and human platelets, which the IC50 was 5.84 +/- 1.70 nM and 8.25 +/- 2.90 nM, respectively. The IC50 of DA-8159 on PDE 1, PDE 2, PDE 3 and PDE 6 were 870+/- 57.4 nM, 101 +/- 15 microM, 52.0 +/- 3.53 microM and 53.3 +/- 2.47 nM, respectively. This suggests that DA-8159 is a potent, highly selective, competitive inhibitor of PDE 5-catalyzed cGMP hydrolysis. The rates of cGMP hydrolysis catalyzed by human platelets-derived PDE 5 as a function of the cGMP concentration (5-100 nM) and two-fixed DA-8159 concentration (11.3 and 18.8 nM) were investigated in order to characterize the mode of PDE 5 inhibition by DA-8159. DA-8159 increased the apparent Km value for cGMP hydrolysis but had no effect on the apparent Vmax, indicating a competitive mode of inhibition. DA-8159 increased the cGMP concentrations in the rabbit corpus cavernosum dose dependently. In the presence of sodium nitroprusside (SNP), DA-8159 significantly stimulated the accumulation of cGMP when compared to the control level. This indicated that the enhancement of a penile erection by DA-8159 involved the relaxation of the cavernosal smooth muscle by NO-stimulated cGMP accumulation. In conclusion, DA-8159 is a selective inhibitor of PDE 5-catalyzed cGMP hydrolysis and the enhancement of a penile erection by DA-8159 is mediated by the relaxation of the cavernosal smooth muscle by the NO-stimulated cGMP accumulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.