Abstract

Microalgae, known for rapid growth and lipid richness, hold potential in biofuels and high-value biomolecules. The symbiotic link with bacteria is crucial in large-scale open cultures. This study explores algal-bacterial interactions using a symbiotic model, evaluating acid-resistant Lactic acid bacteria (LAB), stress-resilient Bacillus subtilis and Bacillus licheniformis, and various Escherichia coli strains in the Aurantiochytrium sp. SW1 system. It was observed that E. coli SUC significantly enhanced the growth and lipid production of Aurantiochytrium sp. SW1 by increasing enzyme activity (NAD-IDH, NAD-ME, G6PDH) while maintaining sustained succinic acid release. Optimal co-culture conditions included temperature 28 °C, a 1:10 algae-to-bacteria ratio, and pH 8. Under these conditions, Aurantiochytrium sp. SW1 biomass increased 3.17-fold to 27.83 g/L, and total lipid content increased 2.63-fold to 4.87 g/L. These findings have implications for more efficient microalgal lipid production and large-scale cultivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call