Abstract

Lithium–sulfur batteries have drawn much attention in advanced energy storage development due to their high theoretical specific capacity; however, several obstacles hinder their applications, including rapid capacity loss due to dissolution of polysulfide into the electrolyte. Nitrogen-doped mesoporous carbon cathode materials were found to effectively immobilize sulfur species and minimize the sulfur loss. In this work, we use X-ray absorption near-edge structure (XANES) spectroscopy to probe the coordination structures of C, O, and N in a carbon cathode before and after the sulfur loading in order to better understand the effects of nitrogen doping. A significant change in oxygen coordination structure is observed, whereas the carbon and nitrogen chemical environments remain unaltered. In addition, the significant change in S K-edge XANES spectra is also observed after sulfur was loaded on nitrogen-doped carbon cathode material. These observations reveal that strong interaction between the nitrogen-dop...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.