Abstract

To increase the extent of comparative oral bioavailability ( F) value and the diuretic and natriuretic effects of orally administered azosemide, ascorbic acid was coadministered to rats. The rationales for this study are that ascorbic acid might inhibit intestinal first-pass effect of azosemide and might increase the unionized fraction of azosemide at the receptor sites. After oral administration of azosemide (20 mg/kg) with 100 mg of ascorbic acid, the F value (138% vs. 100%), 8-h urinary excretion of azosemide (5.18% vs. 1.32% of oral dose), 8-h urine output (41.3 vs. 23.0 ml), and 8-h urinary excretion of sodium (24.6 vs. 15.3 mmol/kg) were greater than controls (without ascorbic acid). The amount of spiked azosemide remaining after 30 min incubation of 50 μg of azosemide with the 9000 g supernatant fraction of rat small intestine was significantly greater by 100 μg of ascorbic acid (45.3 vs. 40.9 μg) than controls (without ascorbic acid). After oral administration of azosemide with NH 4Cl, the urine pH decreased by 0.5 U, and 8-h urine output (25.8 vs. 11.0 ml) and 8-h urinary excretion of sodium (13.3 vs. 6.89 mmol/kg) were significantly greater than controls (without NH 4Cl). The increase in F value and diuretic and natriuretic effects of azosemide with coadministration of ascorbic acid seemed to be due to reduced intestinal first-pass metabolism of azosemide, increased urinary excretion of azosemide, and increased unionized fraction of azosemide at the renal tubular receptor sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call