Abstract

We have found that human chymase produces a 31-amino acid endothelin [ET-1-(1-31)] from the 38-amino acid precursor (Big ET-1). We examined the mechanism of synthetic ET-1-(1-31)-induced intracellular Ca2+ signaling in cultured human coronary artery smooth muscle cells. ET-1-(1-31) increased the intracellular free Ca2+ concentration ([Ca2+]i) in a concentration-dependent manner (10(-14)-10(-10) M). This ET-1-(1-31)-induced [Ca2+]i increase was not affected by phosphoramidon, Bowman-Birk inhibitor, and thiorphan. The ET-1-(1-31)-induced [Ca2+]i increase was not influenced by removal of extracellular Ca2+ but was inhibited by thapsigargin. ET-1-(1-31) at 10(-12) M did not cause Ca2+ influx, whereas 10(-7) M ET-1-(1-31) evoked marked Ca2+ influx, which was inhibited by nifedipine. ET-1-(1-31) also increased inositol trisphosphate formation. These results suggest that the ET-1-(1-31)-induced [Ca2+]i increase at relatively low concentrations is attributable to the release of Ca2+ from inositol trisphosphate-sensitive intracellular stores, whereas Ca2+ influx into the cells evoked by high concentration of ET-1-(1-31) probably occurs through voltage-dependent Ca2+ channels. We concluded that the physiological activity of ET-1-(1-31) may be attributable to Ca2+ mobilization from intracellular stores rather than influx of Ca2+ from extracellular space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.