Abstract
AbstractThe formation and growth of monodisperse polystyrene latex particles in the absence of added surfactant has been studied by sampling polymerization reactions at different times and determining the surface and bulk properties of the latex. A large number of nuclei in excess of 5 × 1012/ml were generated during the first minute of reaction, but this fell due to coagulation until a constant number (1011−1012/ml) was reached. The rate of polymerization per particle was then found to be proportional to the particle radius. Gel‐permeation chromatography has shown that the initial particles consist mainly of material of MW 1000 with a small amount of polymer up to MW 106, and the presence of this low molecular weight polymer, which in many cases can still be detected after 100% conversion, is taken as being indicative of particle formation via a micellization‐type mechanism involving short‐chain (MW 500) free‐radical oligomers. M̄n values determined for the latex particles throughout the course of reactions show that the molecular weight increases to a maximum of about 105 as the particles grow. The presence of anomalous regions within the particles has been confirmed by transmission electron microscopy, scanning electron microscopy, and gas adsorption studies. It has also been found possible to re‐expose these regions within apparently homogeneous particles by stirring with styrene monomer; this is indicative of a molecular weight heterogeneity within the latex particles. The presence of sulfate, carboxyl, and hydroxyl groups upon the latex particle surfaces has been determined by conductometric titration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science: Polymer Chemistry Edition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.