Abstract

The process of pulsed ion beam generation at a gigawatt output power level by a diode with an explosive-emission potential electrode operating in a self-magnetic-insulation regime has been studied. It is shown that a plasma is effectively formed in the diode and the condition of magnetic cutoff of electrons is satisfied along the entire diode length during ion beam generation. However, because of a high drift velocity, the residence time of electrons and protons in the anode-cathode gap is the same, 3–5 ns, while that for C+ carbon ions is greater than 8 ns. This is indicative of a low efficiency of self-magnetic insulation in the given diode. At the same time, it is experimentally established that, during generation of the ion current, the electron component of the total current in stripe diodes of both planar and focusing geometry is suppressed by a factor of 1.5–2. A new mechanism of electron emission suppression is proposed that explains the observed decrease in the electron component of the total current in self-magnetically-insulated ion diodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.