Abstract

A dual cell system with chalcopyrite anode and MnO 2 cathode was used to study the relations between time and such data as the electric quantity and the dissolution rates of the two minerals in the electro-generating leaching(EGL) and the bio-electro-generating leaching(BEGL), respectively. The results showed that the dissolution rates for Cu 2+ and Fe 2+ in BEGL were almost 2 times faster than those in EGL, and nearly 3 times for Mn 2+; the electric output increased nearly by 3 times. The oxidation residue of chalcopyrite was represented by TEM and XRD, whose pattern was similar to that of the raw ore in EGL. The mechanism for leaching of CuFeS 2-MnO 2 in the presence of Acidithiobacillus thiooxidans was proposed as a successive reaction of two independent sub-processes for the anode. The first stage, common to both processes, is dissolution of chalcopyrite to produce Cu 2+, Fe 2+ and sulfur. The second stage is subsequent oxidization of sulfur only in BEGL, which is the controlling step of the process. However, the dissolution of MnO 2 lasts until the reaction of chalcopyrite stops or the ores exhaust in two types of leaching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.