Abstract

Bimetal atom catalysts (BACs) hold significant potential for various applications as a result of the synergistic interaction between adjacent metal atoms. This interaction leads to improved catalytic performance, while simultaneously maintaining high atomic efficiency and exceptional selectivity, similar to single atom catalysts (SACs). Bimetallic site catalysts (M2β12) supported by β12-borophene were developed as catalysts for electrocatalytic carbon dioxide reduction reaction (CO2RR). The research on density functional theory (DFT) demonstrates that M2β12 exhibits exceptional stability, conductivity, and catalytic activity. Investigating the most efficient reaction pathway for CO2RR by analyzing the Gibbs free energy (ΔG) during potential determining steps (PDS) and choosing a catalyst with outstanding catalytic performance for CO2RR. The overpotential required for Fe2β12 and Ag2β12 to generate CO is merely 0.05 V. This implies that the conversion of CO2 to CO can be accomplished with minimal additional voltage. The overpotential values for Cu2β12 and Ag2β12 during the formation of HCOOH were merely 0.001 and 0.07 V, respectively. Furthermore, the Rh2β12 catalyst exhibits a relatively low overpotential of 0.51 V for CH3OH and 0.65 V for CH4. The Fe2β12 produces C2H4 through the *CO-*CO pathway, while Ag2β12 generates CH3CH2OH via the *CO-*CHO coupling pathway, with remarkably low overpotentials of 0.84 and 0.60 V, respectively. The study provides valuable insights for the systematic design and screening of electrocatalysts for CO2RR that exhibit exceptional catalytic performance and selectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call