Abstract

We investigate the electric-pulse-induced resistance switching in manganite systems. We find a "complementarity" effect where the contact resistance of electrodes at opposite ends show variations of opposite sign and is reversible. The temperature dependence of the magnitude of the effect reveals a dramatic enhancement at a temperature T*, below the metal-insulator transition. We qualitatively capture these features with a theoretical model, providing evidence for the physical mechanism of the resistance switching. We argue that doping control of the electronic state of the oxide at the interfaces is the mechanism driving the effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.