Abstract

Hosts of avian brood parasites use a variety of defenses based on egg recognition to reduce the costs of parasitism; the most important of which is rejecting the parasitic eggs. Two basic recognition mechanisms are possible: “true recognition”, whereby hosts recognize their own eggs irrespective of their relative frequency in the clutch, and minority recognition (or “recognition by discordancy”), whereby hosts respond to the minority egg type. The mechanism of recognition has been experimentally studied in a handful of species parasitized by interspecific brood parasites, but the mechanism used in defenses against conspecific brood parasitism is unknown. I experimentally determined the mechanism of egg recognition in American coots (Fulica americana), a species with high levels of conspecific brood parasitism, egg recognition, and rejection. I swapped eggs between pairs of nests to alter frequencies of host and “parasite” eggs and then used two criteria for recognition: egg rejection and nonrandom incubation positions in the clutch. Eight of 12 nests (66%) given equal frequencies of host and parasite eggs showed evidence of true recognition. In contrast, only one of eight (12.5%) nests where host eggs were in the minority showed evidence of recognition by discordancy. The nonrandom incubation positions of parasitic eggs indicates that birds sometimes recognize parasitic eggs without rejecting them and provides a means of assessing recognition on a per nest basis in species with large clutches. Adaptive recognition without rejection may also be an important evolutionary stepping stone to the evolution of egg rejection in some taxa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call