Abstract

A mechanism of charge transport in Au-TiB x -n-GaN Schottky diodes with a space charge region considerably exceeding the de Broglie wavelength in GaN is studied. Analysis of temperature dependences of current-voltage (I–V) characteristics of forward-biased Schottky barriers showed that, in the temperature range 80–380 K, the charge transport is performed by tunneling along dislocations intersecting the space charge region. Estimation of dislocation density ρ by the I–V characteristics, in accordance with a model of tunneling along the dislocation line, gives the value ρ ≈ 1.7 × 107 cm−2, which is close in magnitude to the dislocation density measured by X-ray diffractometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call