Abstract

Iron-nitrogen co-doped carbon materials as heterogeneous catalysts have attracted much attention in advanced oxidation processes involving peroxymonosulfate (PMS) due to their unique structure and enormous catalytic potential. However, there is limited research on the influence of different coordination structures on the central iron atoms. Through simple pyrolysis, we introduced oxygen atoms into the Fe-N coordination structure, constructing Fe-N/O@C catalysts with Fe-N2O2 coordination structure, and achieved efficient degradation of bisphenol A (BPA). Quenching experiments, electron paramagnetic resonance, and electrochemical analysis indicate that compared to the free radical activation pathway of Fe-N@C, high-valent iron-oxo species (≡Fe(Ⅳ) = O) are the main reactive oxygen species (ROS) in the Fe-N/O@C/PMS system. Meanwhile, we compared the differences in the oxidation states of Fe atoms and electron density in different coordination structures, revealing the formation of high-valent iron-oxo species and the mechanism of interfacial electron transfer. Therefore, this study provides new insights into the design and development of Fe-N co-doped catalysts for resource-efficient and environmentally friendly catalytic oxidation systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.