Abstract
Managing caries is imperative in a rapidly aging society. Current diagnoses use qualitative indices. However, a quantitative evaluation of hardness in a clinical setting may lead to more accurate diagnoses. Previously, hardness meter using indenter with light for tooth monitoring (HAMILTOM) was developed to quantitatively measure tooth hardness. Herein, the physical interpretation of dentin hardness measured using HAMILTOM and the dentin hardness measurement mechanism are discussed. This study evaluates the mechanism of dentin hardness measurements using HAMILTOM physically and compare the invasiveness to dentin by HAMILTOM with those using a dental probe for palpation. Eleven bovine dentin samples were used to create caries models. HAMILTOM measured the dark areas, and its indentations were observed using scanning electron microscopy. Also, its invasiveness was evaluated by comparing the results with those from dental probe palpation. The indentation areas were smaller than the dark areas in HAMILTOM, which may be due to exuded water from the dentin sample and the elastic recovery of dentin sample. Additionally, the dental probe indentation was deeper than the HAMILTOM indentations. The results demonstrate that the indentation areas were smaller than the dark areas measured by HAMILTOM, which might contain the influence of exuded water and the deformation of dentin sample. Also, HAMILTOM is less invasive than dental probe palpation. In the future, HAMILTOM may become a standard hardness measuring method to diagnose root caries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.