Abstract

Even though dehydrocyclization is widely practiced in heterogeneous catalysis for the conversion of straight chain hydrocarbons into aromatic compounds, knowledge of the mechanism of this process remains limited, largely because it has not previously been possible to carry out the reaction under conditions amenable to detailed mechanistic studies. We report here ultrahigh vacuum studies of the dehydrocyclization of submonolayer coverages of 1-hexene to benzene on a Cu3Pt(111) single-crystal surface. On the basis of temperature-programmed reaction/desorption (TPR/D) studies of dehydrocyclization of 1-hexene as compared to the reactions of cyclohexene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, benzene, 1,3-hexadiene, and 1,3,5-hexatriene with a Cu3Pt(111) surface, it is found that a rate-determining step in the overall reaction is cyclization. The obtained results show that at low coverages of mono- and bi-unsaturated cyclic compounds, benzene is the only gas-phase hydrocarbon product of reaction of these com...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.