Abstract

A theoretical model is proposed to describe the nucleation of deformation twins at grain boundaries in nanocrystalline materials under the action of an applied stress and the stress field of a dipole of junction or grain-boundary wedge disclinations. The model is used to consider pure nanocrystalline aluminum and copper with an average grain size of about 30 nm. The conditions of barrier-free twinning-dislocation nucleation are studied. These conditions are shown to be realistic for the metals under study. As the twin-plate thickness increases, one observes two stages of local hardening and an intermediate stage of local flow of a nanocrystalline metal on the scale of one nanograin. In all stages, the critical stress increases with decreasing disclination-dipole strength. The equilibrium thickness and shape of the twin plate are analyzed and found to agree well with the well-known results of experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.