Abstract

The mechanism by which an acute fast decreases the glucuronidation of hepatotoxic doses of acetaminophen in the rat was examined. Fasting did not depress the level of the enzyme, glucuronyl transferase, or the basal level of the co-substrate, UDP-glucuronic acid (UDPGA). Administration of a hepatotoxic dose of acetaminophen rapidly depleted UDPGA levels in both fed and fasted rats to the same nadir. Fed and fasted rats differed in that the rate of repletion of UDPGA levels was markedly slower in fasted rats. The total hepatic levels of UDP-glucose dehydrogenase and its cofactor, NAD +, were not decreased by fasting. In fasted rats, hepatic levels of the UDPGA precursor, UDP-glucose, were approximately 60% those of fed rats both before and after a hepatotoxic dose of acetaminophen. In fed rats, acetaminophen induced a marked depletion of hepatic glycogen levels and a dramatic increase in blood glucose levels. Acetaminophen induced a similar marked increase in blood glucose levels in fasted rats in spite of the fact that they lacked hepatic glycogen. It is concluded that the fastinginduced decrease in the glucuronidation of hepatotoxic doses of acetaminophen results from decreased production of UDPGA. The decreased synthetic capacity for UDPGA does not appear to be due to the inability of the liver to produce glucose units perse, but rather to the fasting-induced altered activities of the enzymes of carbohydrate metabolism which, in turn, alter the fate of glucose-6-phosphate derived from gluconeogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.