Abstract

Vibration drilling technology induced by hydraulic pulse can assist the bit in breaking rock at deep formation. Simultaneously, the pulsed jet generated by the hydraulic pulse promotes removal of the cuttings from the bottom hole. Nowadays, the cuttings removal mechanism of the pulsed jet is not clear, which causes cuttings to accumulate at the bottom hole and increases the risk of repeated cutting. In this paper, a pressure-flow rate fluctuation model is established to analyze the fluctuation characteristics of the pulsed jet at the bottom hole. Based on the model, the effects of displacement, well depth, drilling fluid viscosity, and flow area of the pulsed jet tool on the feature of instantaneous flow at the bottom hole are discussed. The results show that the pulsed jet causes flow rate and pressure to fluctuate at the bottom hole. When the displacement changes from 20 L/s to 40 L/s in a 2000 m well, the pulsed jet generates a flow rate fluctuation of 4–9 L/s and pressure fluctuation of 0.1–0.5 MPa at the bottom hole. With the flow area of the tool increasing from 2 cm2 to 4 cm2, the amplitude of flow rate fluctuation decreases by 72.5%, and the amplitude of pressure fluctuation decreases by more than 60%. Combined with the fluctuation feature of the flow field and the water jet attenuation law at the bottom hole, the force acting on the cuttings under the pulsed jet is derived. It is found that flow rate fluctuation improves the mechanical state of cuttings and is beneficial for cuttings tumbled off the bottom hole. This research provides theoretical guidance for pulsed jet cuttings cleaning at the bottom hole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.