Abstract

Toxicological assessment of CMQW generated due to chromite mining activities at Sukinda Valley has revealed high chromium contamination along with Zn and Fe. The present study focused on the mechanism of chromate reduction by an indigenous multi-metal tolerant bacterium, Rhizobium pusense CR02, isolated from CMQW. The isolated strain has shown resistance up to 520 mg/L of Cr(VI) with an IC50 value of 385.4 mg/L. The highest reduction rate 8.6 × 10-2/h was recorded with 20 mg/L of initial concentration of Cr(VI). Extracellular (3.06 ± 0.012 U/mL), intracellular (3.60 ± 0.13 U/mL), and membrane (1.89 ± 0.01 U/mL) associated chromate reductases were found to be involved for reduction. The extracellular polymeric substances (EPS) produced by the isolate also enhanced reduction activity of 46.32 ± 1.69 mg/L after 72 h with an initial concentration of 50 mg/L. FTIR analysis revealed the involvement of functional groups -OH, -CO, and -NH for Cr(VI) biosorption whereas P=O, -CO-NH- and -COOH interacted with Cr(III). Zeta potential with less negative surface charge favored reduction of Cr(VI). Treatment of CMQW by bacterial isolate detoxified Cr(VI) minimizing chromosomal aberrations in root cells of Allium cepa L., suggesting the role of Rhizobium pusense CR02 as a promising bio-agent for Cr(VI) detoxification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.