Abstract

The mechanism of controlling supersonic cavity oscillations using upstream mass injection is investigated by implicit large-eddy simulations of a turbulent flow (M∞ = 2.0, ReD = 105) past a rectangular cavity with a length-to-depth ratio of 2. The mass injection is simulated by specifying a vertical velocity profile of a jet ejecting steadily through a slot placed at the upstream of the cavity leading edge. The results show that the steady upstream mass injection produces significant attenuation of the cavity oscillations, and two primary mechanisms are demonstrated to be directly responsible for the noise suppression: lifting up of the cavity shear layer, and damping of the shear-layer instability. It is found that the case of low mass flow injection investigated is more effective in stabilizing the cavity shear layer than the high mass flow injection. A transition stage might exist between two well-developed oscillating modes, but “mode-switching” is not observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.