Abstract

We have reported that, in canine hearts, cardiac cooling to 29 degrees C enhanced left ventricular contractility but changed neither the contractile efficiency of cross-bridge (CB) cycling nor the excitation-contraction coupling energy. The mechanism of this intriguing energetics remained unknown. To get insights into this mechanism, we simulated myocardial cooling mechanoenergetics using basic Ca2+ and CB kinetics. We assumed that both adenosinetriphosphatase (ATPase)-dependent sarcoplasmic reticulum (SR) Ca2+ uptake and CB detachment decelerated with cooling. We also assumed that all the ATPase-independent SR Ca2+ release, Ca2+ binding to and dissociation from troponin, and CB attachment remained unchanged. The simulated cooling shifted the CB force-free Ca2+ concentration curve to a lower Ca2+ concentration, increasing the Ca2+ responsiveness of CB force generation, and increased the maximum Ca(2+)-activated force. The simulation most importantly showed that these cooling effects combined led to a constant contractile efficiency when Ca2+ uptake and CB detachment rate constants changed appropriately. This result seems to account for our experimentally observed constant contractile efficiency under cooling inotropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call