Abstract
Reductive dehalogenation involving cobalamin has been proved to be a promising strategy for decontamination of the polluted environment. However, cob(I)alamin can act both as a strong reductant and a powerful nucleophile, and thus, several competing dehalogenation pathways may be involved. This work uses experimentally calibrated density functional theory on a realistic cobalamin model to resolve controversies of cobalamin-mediated reduction of chloroethylenes by exploring mechanisms of electron transfer, nucleophilic substitution, and nucleophilic addition. The computational results provide molecular-level insight into the competing pathways for chloroethylenes reacting with cob(I)alamin: the computed ratios of inner-sphere to outer-sphere pathways for perchloroethylene and trichloroethylene are 17:1 and 3.5:1, respectively, in accord with the corresponding experimental ratios of >10:1 and >2.3:1, while the computed outer-sphere pathway for other less-chlorinated ethylenes is hampered by high barriers (>...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.