Abstract
Coarsening of crystalline nanoporous metals involves complex changes in topology associated with the reduction of genus via both ligament pinch-off and void bubble formation. Although void bubbles in metals are often associated with vacancy agglomeration, we use large-scale kinetic Monte Carlo simulations to show that both bubble formation and ligament pinch-off are natural results of a surface-diffusion-controlled solid-state Rayleigh instability that controls changes in the topology of the porous material during coarsening. This result is used to find an effective activation energy for coarsening in nanoporous metals that is associated with the reduction of topological genus, and not the reduction of local surface roughness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.