Abstract

A novel transformation of silyl amides to N-cis-propenyl amides was recently reported, the reaction of which is a formal 10-electron double sigmatropic, or dyotropic, rearrangement. Density functional calculations (B3LYP/6-311++G(3d,3p)//B3LYP/6-31G(d)) have been carried out to investigate the mechanism of this reaction. A two-step process involving sequential 1,4-silyl and 1,4-hydrogen shifts is predicted. The 1,3-dipolar azomethine ylide intermediate profits from charge stabilization by allylic resonance and phenyl conjugation. The consecutive thermal migration of two sigma-bonds (stepwise dyotropic rearrangement) is an example of a host of reactions with synthetic potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.