Abstract

Micromachining repair of surface defects on KH2PO4 (KDP) optics is an emerging technique in the construction of Inertial Confinement Fusion facilities for obtaining clean nuclear fusion energy. However, this method is yet facing considerable challenges owing to the soft-brittle nature of single-crystal KDP, hence it is necessary to understand its ductile-regime cutting mechanism to generate crack-free surfaces. This paper seeks to investigate the evolution of different cutting mechanism with the change of uncut chip thickness (UCT) in KDP orthogonal cutting processes. A transition of cutting modes from plastic cutting to shear-crack cutting and then fracture cutting with the rise of UCT has been revealed. To explain these cutting phenomena, a novel theoretical model was proposed by calculating the specific energy dissipation for crack/fracture propagations during cutting processes based on fracture mechanics. This analytical model was well validated by the analysis of cutting forces and machined surface quality. Nevertheless, three kinds of surface defects have been observed, i.e. micro pits, micro craters and edge chipping. These surface defects were caused by tearing and spalling of materials with elastic recovery, crack propagation along cleavage planes with ploughing effect, and the peeling away of large-size fracture, respectively. The presented results of great significance for promoting the application of micromachining processes in future engineering repair of KDP optics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.