Abstract
To investigate the mechanism of charge separation in DNA with consecutive adenines adjacent to a photosensitizer (Sens), a series of naphthalimide (NI) and 5-bromouracil ((br)U)-modified DNAs were prepared, and the quantum yields of formation of the charge-separated states (Phi) upon photo-excitation of the Sens NI in DNA were measured. The Phi was modulated by the incorporation site of (br)U, which changes the oxidation potential of its complementary A through hydrogen bonding and the hole-transfer rates between adenines. The results were interpreted as charge separation by means of the initial charge transfer between NI in the singlet excited state and the second- and third-nearest adenine to the NI. In addition, the oxidation of the A nearest to NI leads to the rapid charge recombination within a contact ion pair. This suggests that the charge-separation process can be refined to maximize the Phi by putting a redox-inactive spacer base pair between a photosensitizer and an A-T stretch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.