Abstract

Superparamagnetic iron oxide (SPIO) nanoparticles are contrast agents used for magnetic resonance imaging. Ferucarbotran is a clinically approved SPIO-coated carboxydextran with a diameter of about 45–60 nm. We investigated the mechanism of cellular uptake of Ferucarbotran with a cell model using the murine macrophage cell line Raw 264.7. We observed a dose-dependent uptake of these SPIO particles by spectrophotometer analysis and also a dose-dependent increase in the granularity of the macrophages as determined by flow cytometry. There was a linear correlation between the side scattering mean value and iron content (P<0.001, R2 = 0. 8048). For evaluation of the endocytotic pathway of these ingested SPIO particles, different inhibitors of the endocytotic pathways were employed. There was a significant decrease of side scattering counts in the cells and a less significant change in signal intensity based on magnetic resonance in the phenylarsine oxide-treated macrophages. After labeling with SPIO particles, the macrophages showed an increase in the production of reactive oxygen species at 2, 24, and 48 h; a decrease in mitochondrial membrane potential at 24 h; and an increase in cell proliferation at 24 h. We concluded that Ferucarbotran was internalized into macrophages via the clathrin-mediated pathway and can change the cellular behavior of these cells after labeling.

Highlights

  • Superparamagnetic iron oxide (SPIO) nanoparticles with dextran or carboxydextran coating are magnetic particles that have been used as a magnetic resonance imaging (MRI) contrast agent [1]

  • We previously investigated nanoparticle-labeled macrophages using flow cytometry and observed increased side scattering counts (SSC) when the cells were treated with an increased concentration of SPIO particles [10]

  • The maximum particle uptake was 18 pg Fe/cell. This occurred at a concentration of 100 mg Fe/ ml SPIO following a 24 h incubation, which was statistically significant compared to the control

Read more

Summary

Introduction

Superparamagnetic iron oxide (SPIO) nanoparticles with dextran or carboxydextran coating are magnetic particles that have been used as a magnetic resonance imaging (MRI) contrast agent [1]. After intravenous injection, these particles are recognized by macrophages that reside mostly in the liver, bone marrow, and spleen [2,3]. Ferucarbotran is one of the few SPIO particles that is approved for the use in clinical medical imaging [4]. Ferucarbotran is composed of iron oxide and has a core diameter of 4.2 nm and a polymer coating composed of carboxydextran for prevention of aggregation and sedimentation. Different compositions of the coating can contribute to different levels of cell uptake efficiency, as shown in human monocytes (macrophage lineage cells) [6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.