Abstract

Objective:The cardioprotective potential of human recombinant erythropoietin (alpha) (Epo) against ischemia-reperfusion-induced injury is well known. But, the underlying mechanisms are not well elucidated. The aim of this study was to characterize the mechanism involved in the cardioprotective effect of Epo-induced preconditioning in isolated rat heart.Materials and Methods:The heart was mounted on a Langendorff apparatus. After 10 min of stabilization, four cycles of ischemic preconditioning (IPC) were given followed by 30 min of global ischemia and 120 min of reperfusion. Epo preconditioning was induced by four cycles of 5-min perfusion of K-H solution containing Epo (1.0 U/ml) followed by 5 min perfusion with K-H solution. Myocardial infarct size was estimated macroscopically using the triphenyltetrazolium chloride staining technique. The extent of myocardial injury was measured by release of lactate dehydrogenase and creatine kinase-MB in the coronary effluent.Results:The present study demonstrates that Epo preconditioning was almost as effective as IPC. Administration of Wortmannin (100 nM), a PI-3K inhibitor, or Chelerythrine (1 µM), a protein kinase-C (PKC) inhibitor, or AG490 (5 µM), a JAK-2 inhibitor, significantly attenuated the cardioprotective effects of Epo-induced preconditioning.Conclusion:Our result suggest that the cardioprotective potential of Epo-induced preconditioning in isolated rat heart was due to an interplay of the JAK-2, PI-3K and PKC pathways. Inhibition of any one of the three pathways was sufficient to block the cardioprotective effect of Epo-induced preconditioning in isolated rat heart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call