Abstract

In muscle and other mechanically active tissue, cell membranes are constantly injured and their repair depends on the injury induced increase in cytosolic calcium. Here we show that injury-triggered Ca2+ increase results in assembly of ESCRTIII and accessory proteins at the site of repair. This process is initiated by the calcium binding protein - Apoptosis Linked Gene (ALG)-2. ALG-2 facilitates accumulation of ALG-2 interacting protein X (ALIX), ESCRT III, and Vps4 complex at the injured cell membrane, which in turn results in cleavage and shedding of the damaged part of the cell membrane. Lack of ALG-2, ALIX, or Vps4B each prevents shedding, and repair of the injured cell membrane. These results demonstrate Ca2+-dependent accumulation of ESCRTIII-Vps4 complex following large focal injury to the cell membrane and identify the role of ALG-2 as the initiator of sequential ESCRTIII-Vps4 complex assembly that facilitates scission and repair of the injured cell membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.