Abstract

Density functional theory (DFT) calculations have been carried out to study the mechanism of N-alkylation of primary and secondary arylamines with aldehydes and ketones under the catalysis of the Lewis acid B(C6F5)3 using silanes. The B(C6F5)3-mediated reduction of organic substrates is usually reported under anhydrous conditions. It is noteworthy that Ingleson and co-workers have established that B(C6F5)3 could act as a water tolerant catalyst in N-alkylation of arylamines with aldehydes/ketones. Our DFT calculation results revealed that both Lewis acid B(C6F5)3 and water play important roles in the condensation of amine and aldehyde to generate an imine intermediate and in the subsequent reduction of imine to yield an amine product. In the condensation reaction, Bronsted acid B(C6F5)3-H2O acts as the effective catalyst to promote the proton transfer process. The activation free energy barrier is calculated to be 21.1 kcal/mol, which is 23.0 kcal/mol lower than that of the water-assisted condensation pat...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call