Abstract

Introducing the cellulose chain cationic groups in the modification process completely changes the charge on the cotton surface from negative to partially or totally positive. That allows the electrostatic attraction and simultaneous exhaustion and fixation of reactive dyes. This reaction can be carried out without salt and alkali at room temperature. Similarly, the reaction between reactive dye and an alone copolymer ([IME]+Cl−) with TLC chromatography was confirmed. The analysis with the use of particle optimisation with MM+ molecular mechanics and quantum-chemical calculations PM3 by the method of all valence orbitals confirmed the experimental results of the high activity of the nucleophile formed on the hydroxyl group in the chain of a modifier. It was found and experimentally confirmed that the reactive dyes during the dyeing process of the cotton cationised with copolymer (chloromethyl)oxirane -1H-imidazole ([IME]+Cl−) create covalent bonds due to a reaction with the hydroxyl group located in the modification agent instead of with the hydroxyl group in the glucopiranose ring. Although the dyeing takes place in very mild conditions, a high degree of setting is achieved, comparable to conventional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.