Abstract

In a transonic centrifugal compressor, the loss generation is intensified by the formation of the shock wave and consequently the blockage is expected to increase. The blockage is considered to influence not only the flow rate and the increase of the static pressure but also the stall inception. However, the detailed mechanism of the blockage generation in the transonic centrifugal compressor has not been fully clarified. In this study, in order to clarify the mechanisms of loss and blockage generations in the transonic centrifugal compressor which are expected to be strongly influenced by the operating condition, the flows in the compressor at the off-design condition as well as at the design condition were analyzed numerically. The verifications of the computed results were carried out by comparing with available experimental results. The computed result clarified that the loss generation near the impeller inlet at design condition was mainly caused by the interactions of the shock wave with the tip leakage vortex appearing from the leading edge of the main blade as well as the boundary layer on the suction surface of the main blade. Moreover, these interactions were intensified by the decrease of the flow rate, and consequently enhanced the blockage effects by the tip leakage vortex from the leading edge of the main blade and resulted in the increase of the aerodynamic loss especially along the shroud surface in the impeller passage. On the other hand, the decrease of the blockage effects by the tip leakage vortex from the main blade with the increase of the flow rate formed the shock wave on the suction surface of the splitter blade at near-choke condition. This shock wave interacted with the tip leakage vortex from the splitter blade and consequently increased the aerodynamic loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call