Abstract

The mechanism(s) by which bile acids increase biliary protoporphyrin excretion was characterized using perfused rat livers. We determined 1) relationships between biliary bile acids, phospholipid, and protoporphyrin, using rapid kinetic analyses; 2) protoporphyrin excretion in livers with defective canalicular multispecific organic anion transport; 3) effects of intracellular vesicular transport inhibition with colchicine and monensin; and 4) the role of luminal bile acids, using retrograde intrabiliary taurocholate injections. Biliary protoporphyrin excretion peaked with phospholipid excretion 14-18 min after loading. Protoporphyrin excretion induced by taurocholate was not related to effects on intracellular transport, including colchicine- and monensin-inhibitable vesicular systems. Eisai hyperbilirubinemic rat livers excreted protoporphyrin similarly to controls. Retrograde intrabiliary taurocholate injections increased protoporphyrin output. Collectively, these data suggest that 1) intracellular protoporphyrin transport is mediated by nonvesicular carriers targeted to the canalicular membrane, and 2) bile acid facilitates protoporphyrin translocation into bile in the same manner it effects phospholipid excretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.