Abstract

BackgroundBalloon burst during transcatheter aortic valve replacement (TAVR) is serious complication. This study pioneers a novel approach by combining image observation and computer simulation validation to unravel the mechanism of balloon burst in a patient with bicuspid aortic valve (BAV) stenosis. MethodA new computational model for balloon pre-dilatation was developed by incorporating the element failure criteria according to the Law of Laplace. The effects of calcification and aortic tissue material parameters, friction coefficients, balloon types and aortic anatomy classification were performed to validate and compare the expansion behavior and rupture mode of actual balloon. ResultsBalloon burst was dissected into three distinct stages based on observable morphological changes. The mechanism leading to the complete transverse burst of the non-compliant balloon initiated at the folding edges, where contacted with heavily calcified masses at the right coronary sinus, resulting in high maximum principal stress. Local sharp spiked calcifications facilitated rapid crack propagation. The elastic moduli of calcification significantly influenced balloon expansion behavior and crack morphology. The simulation case of the calcific elastic modulus was set at 12.6 MPa could closely mirror clinical appearance of expansion behavior and crack pattern. Furthermore, the case of semi-compliant balloons introduced an alternative rupture mechanism as pinhole rupture, driven by local sharp spiked calcifications. ConclusionsThe computational model of virtual balloons could effectively simulate balloon dilation behavior and burst mode during TAVR pre-dilation. Further research with a larger cohort is needed to investigate the balloon morphology during pre-dilation by using this method to guide prosthesis sizing for potential favorable outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call