Abstract

Bioluminescence catalyzed by bacterial luciferases was measured using FMN, iso-FMN (6-methyl-8-nor-FMN), and FMN analogs carrying the following substituents at position 8: -H, -Cl, -F, SMe, SOMe, -SO2Me, or -OMe. The first-order rate constants for the decay of light emission correlate with the one-electron oxidation potentials of the 4a,5-dihydro forms of the FMN analogs. To determine the values of these potentials, isoalloxazine (flavin) derivatives having the 4a,5-propano-4a,5-dihydro structure and -H, -CH3, -Cl, -OCH3, and -NH2 as substituents at position 8 have been synthesized as models for the 4a-peroxy-4a,5-dihydroflavin intermediates occurring during catalysis by the flavin-dependent monooxygenase luciferase. The tetrahydropyrrole ring between positions 4a and 5 of these isoalloxazine derivatives stabilizes the 4a,5-dihydroflavin by impeding formation of the thermodynamically more stable 1,5-dihydro form. One-electron oxidation potentials (Eobs) were measured by cyclic voltammetry and used to determine the empirical coefficients in the Swain equation. On the basis of this, the one-electron oxidation potentials of 4a,5-propano-4a,5-dihydro analogs with other substituents in position 8 were calculated (Ecalc). The bioluminescence reaction rate is fastest with FMN analogs of lowest oxidation potential; i.e., the slope of the correlation is negative. This indicates that in the rate-limiting step the 4a,5-dihydroflavin moiety donates negative charge. The results are compatible with an intramolecular, chemically initiated electron exchange luminescence mechanism for the bacterial luciferase reaction.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.