Abstract

Arsenic, along with mercury and selenium, represents one of the trace metallic emissions from fossil fuel-fired power plants that exhibit a tendency to remain in the gas phase. In this study, the effectiveness of some commonly used mineral sorbents is tested for the removal of arsenic from flue gas. Investigations are conducted with hydrated lime sorbent to identify the mechanism of As/Ca interaction and the chemical state and characteristics of captured species. Arsenic oxide (As2O3) is used as the representative arsenic species, and investigations are conducted in a differential fixed bed reactor at medium (400−600 °C) and high (1000−800 °C) temperature conditions. Comparison of Ca(OH)2 with three other mineral sorbents (kaolinite, alumina, and silica) reveals that calcium hydroxide is the most effective in capturing arsenic. The capture mechanism of Ca(OH)2 does not involve a simple physical adsorption but proceeds by means of an irreversible chemical reaction leading to a solid product. X-ray diffract...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.