Abstract
The antimicrobial activity and mechanism of CdTe quantum dots (QDs) against Escherichia coli were investigated in this report. Colony-forming capability assay and atomic force microscopy (AFM) images show that the QDs can effectively kill the bacteria in a concentration-dependent manner. Results of photoluminescence spectrophotometry, confocal microscopy, and antioxidative response tests indicate that the QDs bind with bacteria and impair the functions of a cell's antioxidative system, including down-regulations of antioxidative genes and decreases of antioxidative enzymes activities. The oxidative damage of protein and lipid is also observed with thiobarbituric reacting substances and protein carbonyl assays, respectively. On the basis of these results, it is proposed that the mechanism of the antimicrobial activity of CdTe QDs involves QDs-bacteria association and a reactive oxygen species-mediated pathway. Thus, CdTe QDs could have the potential to be formulated as a novel antimicrobial material with excellent optical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.