Abstract

This study determined anterior cruciate ligament (ACL) force and its contributors during a standardized drop-land-lateral jump task using a validated computational model. Three-dimensional whole-body kinematics, ground reaction forces, and muscle activation patterns from eight knee-spanning muscles were collected during dynamic tasks performed by healthy recreationally active females (n = 24). These data were used in a combined neuromusculoskeletal and ACL force model to determine lower limb muscle and ACL forces. Peak ACL force (2.3 ± 0.5 bodyweight) was observed at ~14% of stance during the drop-land-lateral jump. The ACL force was primarily generated through the sagittal plane, and muscle was the dominant source of ACL loading. The main ACL antagonists (i.e., loaders) were the gastrocnemii and quadriceps, whereas the hamstrings were the main ACL agonists (i.e., supporters). Combining neuromusculoskeletal and ACL force models, the roles of muscle in ACL loading and support were determined during a challenging motor task. Results highlighted the importance of the gastrocnemius in ACL loading, which could be considered more prominently in ACL injury prevention and rehabilitation programs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.