Abstract

The mammalian cochlea is a highly sensitive transducer which converts acoustic vibration into electrical signal. The acoustic vibration enters via the stapes and travels in the scala fluid along the cochlea from its basal to apical end. Prior to the acoustic-electrical conversion, the acoustic vibration is mapped onto the basilar membrane based on decreasing frequencies from base to apex. The variation of dynamic structural properties of the basilar membrane contributes to the frequency-mapping and sensitivity of the cochlea. The basilar membrane in most species of mammals, including humans, varies in width and thickness. However, in few species of mammals, such as gerbil, their basilar membranes are arched and have a resting radial tension. These mammals retain their cochlear sensitivity despite the lack of varying width and thickness in their basilar membrane. The present research analyses the mechanism of an arched basilar membrane in contributing to the sharp frequency tuning in a gerbil cochlea. The findings provide understanding of an arched membrane in mammalian cochlea and enables development for application of the cochlear mechanics in areas such as microfluidics and artificial cochlear development where limitations on the channel width are critical. Among the more commonly researched species, the basilar membrane in human cochlea varies significantly in width (300% increase) and thickness (75% decrease) from its basal to apical end. The bandwidth of human cochlear auditory nerve fiber tuning curve is estimated with Yoon et. al.'s 3-Dimensional, push-pull mechanism, two-box model and compared to the bandwidth of gerbil cochlea. The results show comparative sensitivity between gerbil and human cochlea. In order to understand the difference between the two types of basilar membranes, effects of the bending stiffness and radial tension on the acoustic traveling wave in the passive gerbil cochlea is analyzed. The traveling wave number obtained from experimental measurements is compared to that calculated from Steele et. al.'s 3-Dimensional, two-box model which assumed a flat basilar membrane. Significant variation in bending stiffness along the cochlea (1-2 orders in section of 2.2 mm to 3 mm from base) is required in the Steele et. al.'s model in order to match the wave number obtained from experimental measurements. With knowledge of contributing factors in the mechanism of an arched membrane, the dynamic equation is formulated with experimental measurements of gerbil basilar membrane and substituted to the eikonal equation of the two-box model. The wave number coefficients in the eikonal equation of the present arched basilar membrane model matched Yoon et at.'s verified gerbil cochlear model which used estimated effective basilar membrane properties. For integration of cochlea mechanics design into microfluidic applications and the development of artificial cochlea, a method of fabricating and bonding the thin, flexible, anisotropic, 3-dimensional basilar membrane is required as the boundary conditions…

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call