Abstract

Adhesive force exists between polymer nano/microfibers. An elaborate experiment was performed to investigate the adhesion between polymer nano/microfibers using a nanoforce tensile tester. Electrospun polycaprolactone (PCL) fibers with diameters ranging from 0.4-2.2 μm were studied. The response of surface property of electrospun fiber to the environmental conditions was tracked by FTIR and atomic force microscopy (AFM) measurements. The effect of temperature on molecular orientation was examined by wide angle X-ray diffraction (WAXD). The adhesive force was found to increase with temperature and pull-off speed but insensitive to the change of relative humidity, and the abrupt increase of adhesion energy with temperature accompanied by a reduced molecular orientation in the amorphous part of fiber was observed. Results show that adhesion is mainly driven by van der Waals interactions between interdiffusion chain segments across the interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.